
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1984

The effects of silica, nitrogen, and phosphorus
limitation on the biochemical composition of
Cyclotella meneghiniana Kütz: an experimental
analysis
David Fred Millie
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Botany Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Millie, David Fred, "The effects of silica, nitrogen, and phosphorus limitation on the biochemical composition of Cyclotella
meneghiniana Kütz: an experimental analysis " (1984). Retrospective Theses and Dissertations. 9013.
https://lib.dr.iastate.edu/rtd/9013

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9013&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9013&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/104?utm_source=lib.dr.iastate.edu%2Frtd%2F9013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9013?utm_source=lib.dr.iastate.edu%2Frtd%2F9013&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This reproduction was made from a copy of a document sent to us for microfilming. 
While the most advanced technology has been used to photograph and reproduce 
this document, the quality of the reproduction is heavily dependent upon the 
quahty of the material submitted. 

The following explanation of techniques is provided to help clarify markings or 
notations which may appear on this reproduction. 

1.The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. This 
may have necessitated cutting through an image and duplicating adjacent pages 
to assure complete continuity. 

2. When an image on the film is obliterated with a round black mark, it is an 
indication of either blurred copy because of movement during exposure, 
duplicate copy, or copyrighted materials that should not have been filmed. For 
blurred pages, a good image of the page can be found in the adjacent frame. If 
copyrighted materials were deleted, a target note will appear listing the pages in 
the adjacent frame. 

3. When a map, drawing or chart, etc., is part of the material being photographed, 
a definite method of "sectioning" the material has been followed. It is 
customary to begin filming at the upper left hand comer of a large sheet and to 
continue from left to right in equal sections with small overlaps. If necessary, 
sectioning is continued again—beginning below the first row and continuing on 
until complete. 

4. For illustrations that cannot be satisfactorily reproduced by xerographic 
means, photographic prints can be purchased at additional cost and inserted 
into your xerographic copy. These prints are available upon request from the 
Dissertations Customer Services Department. 

5. Some pages in any document may have indistinct print. In all cases the best 
available copy has been filmed. 

Universî  
Micrôrilms 

International 
300 N. Zeeb Road 
Ann Arbor, Ml 48106 



www.manaraa.com



www.manaraa.com

8423658 

Millie, David Fred 

THE EFFECTS OF SILICA, NITROGEN, AND PHOSPHORUS LIMITATION ON 
THE BIOCHEMICAL COMPOSITION OF CYCLOTELLA MENEGHINIANA KUTZ: 
AN EXPERIMENTAL ANALYSIS 

Iowa State University PH.D. 1984 

University 
iVlicrofilms 

I nt©rn d.ti 0n3l 300 N. Zeeb Road, Ann Arbor, Ml 48106 

Copyriglit 1984 

by 

Millie, David Fred 

All Rights Reserved 



www.manaraa.com



www.manaraa.com

The effects of silica, nitrogen, and phosphorus limitation on the 

biochemical composition of Cyclotella meneghiniana KUtz.: 

An experimental analysis 

by 

David Fred Millie 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Botany 
Major: Botany (Aquatic Plant Biology) 

Approved: 

Charge of Major Work 

For the Major Depaa^ment 

For the Graduate College 

Iowa State University 
Ames, Iowa 

1984 

Copyright @ David Fred Millie, 1984. All rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

©1984 

DAVID FRED MILLIE 

All Rights Reserved 



www.manaraa.com

il 

TABLE OF CONTENTS 

Page 

ABBREVIATIONS iii 

INTRODUCTION 1 

LITERATURE REVIEW 4 

METHODS 14 

Experimental Design 16 

Sample Analysis 22 

Statistical Analysis 25 

RESULTS 28 

DISCUSSION 50 

BIOTECHNICAL PERSPECTIVE 62 

SUMMARY 65 

LITERATURE CITED 67 

ACKNOWLEDGMENTS 77 

APPENDIX: MEAN SQUARE VALUES OF THE FACTORIAL ANALYSIS AND THE 
ANALYSIS OF VARIANCE 79 



www.manaraa.com

ABBREVIATIONS 

ANOVA - analysis of variance 

ATP - adenosine triphosphate 

Chl/Ph - chlorophyl1/phaeophyti n 

DNA - deoxyribonucleic acid 

FAMES - fatty acid methyl esters 

FAS - fatty acid synthetase 

gj - gigajoule 

ha - hectare 

L/G - lipid/glucan 

LSD - least significant difference 

ml - milliliter 

N - nitrogen 

P - phosphorus 

P/G - protein/glucan 

Si - silica 

SifOH)^ - silicic acid 

yr - year 



www.manaraa.com

1 

INTRODUCTION 

The biochemical composition of algae has been studied extensively. 

This information is useful to researchers analyzing the suitability of 

algae as food sources in aquatic food chains. In addition, biochemical 

information may aid in the characterization of the physiological condi

tion of natural algal populations and may provide phylogenetic implica

tions (Darley, 1977). 

In recent years, the concern over limited energy sources has prompted 

researchers to investigate algal biochemistry and physiology in a tech

nological perspective. Some algae, particularly diatoms, accumulate 

lipid as a storage product. This storage product, coupled with the high 

photosynthetic efficiency of the algal cell, has prompted researchers to 

consider algae as a potential energy source. The high-energy lipid, when 

harvested, could be used as is or converted to hydrocarbon fuels 

(Bergeron et ^., 1983). The high-energy content of the lipid-enriched 

cells may also allow algae to serve as a potential food source. 

The effect of nutrient concentration on algal biochemical composi

tion is not well-documented. Researchers have reported that nutrient 

limitation generally causes a decrease in protein and photosynthetic 

pigments and an increase in lipid and carbohydrate storage products 

(Darley, 1977). However, most researchers have used batch cultures 

where algal cells are limited to a finite amount of nutrients. In batch 

cultures, cells progressively modify the nutrient concentration of the 

medium and exhibit exponential, linear, and stationary growth phases. 
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Any physiological measurements made on such a constantly changing popu

lation cannot be identified with a particular growth stage or nutrient 

concentration (Weete, 1980). 

Continuous culture systems maintain a constant rate of nutrient 

supply coupled with a constant rate of cell removal. Under these con

ditions, cultures achieve a steady state where cell density, growth 

rate, and mean biochemical composition are constant. Changes in the 

rate of nutrient supply will cause changes in the growth rate, bio

chemical composition, and physiological state of the cells. Physiologi

cal measurements made on steady-state cells at different rates of nutri

ent supply would characterize a population at specific points along a 

growth curve and/or nutrient gradient. 

Little information is available on the effect of nutrient limita

tion on the biochemical composition of algae under steady state condi

tions. Richardson et (1969) analyzed the amount of cellular lipid 

and chlorophyll of two green algae in response to increasing nitrogen 

concentration in a chemostat. Myklestad (1974), using continuous culture 

techniques, reported the amount of cellular carbohydrate and protein of 

a marine diatom in response to increasing nitrogen and phosphorus con

centrations. To my knowledge, the amount of cellular lipid of diatoms 

under steady state conditions along a nutrient gradient has not been 

investigated. 

The intent of this study was to analyze the effects of nutrient 

starvation and nutrient stress on the amount of cellular lipid, fatty 

acid, glucan, protein, and chlorophyll of a diatom. In this study. 
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the term "nutrient-starved cultures" refers to batch cultures in which 

the nutrient under investigation is deleted from the growth medium. 

The term "nutrient-stressed cultures" refers to semi-continuous cultures 

in which the nutrient under investigation is present within the growth 

medium, but at lower concentrations than necessary for maximum rates of 

growth. Silica (Si), nitrogen (N), and phosphorus (P) were chosen for 

investigation because other researchers have shown these nutrients to 

frequently limit diatom growth. The centric diatom, Cyclotella 

meneqhiniana Kutz., was selected for study because it can be easily 

cultured in defined media and produces large amounts of lipid. 
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LITERATURE REVIEW 

The importance of Si, N, and P in algal biochemistry and physiology 

is well-documented. Diatoms readily absorb Si as silicic acid (Si(OH)^) 

and incorporate it in a polycondensed form as the main structural com

ponent of the cell wall (Werner, 1977). The amount of Si of diatoms 

typically comprises 10 to 30% of the cell's dry weight (Paasche, 1980), 

but may change with variations in the cell's growth rate, life cycle, 

structural features, and amount of surface area as well as the Si(OH)^ 

concentration available for uptake (Eppley, 1977; Werner, 1977). 

Researchers have indicated that diatoms do not accumulate excess Si 

early in their development for later use in cell division (Darley, 1969; 

Paasche, 1980). However, Kilham et (1977) reported Diatoma elongatum 

can store up to 4.4 times more Si than needed for cell function. 

The role of Si in diatom physiology is not well-understood. Be

sides its obvious function as a structural component. Si is also con

sidered to be a required element for certain physiological functions. 

Metabolic Si has been reported to affect the citric acid cycle (between 

acetyl coenzyme A and 2-oxoglutarate), ATP oxidative phosphorylation, 

protein synthesis, respiration, chrysolaminaran utilization, chlorophyll 

synthesis, and DNA synthesis (Coombs et aj[., 1967b; Darley and Volcani, 

1969; Azam et^., 1974; Werner, 1977; Sullivan and Volcani, 1981). 

The role of N in algal physiology has been extensively studied 

(Morris, 1974; McCarthy, 1980). N is often reported to be the limiting 

nutrient in marine systems. Along with carbon, hydrogen, and oxygen, N 
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comprises a major portion of the dry matter of algal cells (Syrett, 

1981). It is an essential constituent of important molecules such as 

amino acids, nucleic acids, and chlorophyll. 

Algae have been reported to absorb M in the form of nitrate, ni

trite, ammonia and urea (Lewin and Guillard, 1963; McCarthy, 1980). 

Amino acids have also been reported to be a N source for several diatoms 

(Hellebust and Lewin, 1977). The preferred order of N utilization 

appears to proceed from ammonia to urea to nitrate in both natural and 

culture systems (McCarthy, 1980). Morris (1974) stated that cellular 

growth rate is usually the same with either ammonia or nitrate as the N 

source. Paasche (1971), however, reported that Dunaliella tertiolecta, 

grew 30% faster with ammonia as the N source than with nitrate. Nitrate 

and nitrite must undergo an energy-requiring reduction prior to their 

incorporation into glutamate and amino acids (Syrett, 1962; Bidwell, 

1974; Morris, 1974). Therefore, cells which can readily assimilate 

reduced forms of N would be expected to have increased growth rates 

because energy could then be utilized for cell synthesis rather than for 

cell maintenance. 

The role of P in algal physiology has also been studied extensively 

(Kuhl, 1974; Nalewajko and Lean, 1980). Researchers often report P to 

be the nutrient responsible for increased algal productivity in fresh

water systems. It is essential to all life forms as it functions in 

storage and transfer of metabolic energy (adenosine triphosphate) and is 

required for the synthesis of nucleotides, phospholipids, and other 

phosphorylated compounds. 
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Algae assimilate P in an inorganic soluble form such as orthophos

phate (Wetzel, 1975). In some algae, organically-bound P appears to be 

the preferred form for P uptake (Nalewajko and Lean, 1980). Unlike N, 

however, P does not undergo any valency change during its assimilation 

and within the cell it forms polyphosphates. Many algae, when provided 

with sufficient P, can store excess P as polyphosphate bodies in the 

cytoplasm or vacuole. Stevenson and Stoermer (1982) reported these 

P "sinks" in algal cells to be related to the P concentration in the 

water. Tilman and Kilham (1976) reported that the diatom Asterionella 

formosa can store up to 82 times more P than needed for cell maintenance. 

These P "sinks" have great physiological and ecological significance for 

they allow the cell to continue normal metabolic functions even when P 

in the environment is limited (Kuhl, 1974). 

Researchers have proposed that optimum cell nutrient ratios be 

used to indicate the limiting role of algal nutrients. The optimum 

cell nutrient ratio is the ratio at which transition from limitation 

by one nutrient to another takes place (Rhee and Gotham, 1980). Redfield 

(1958) reported a N:P ratio of approximately 15:1 for algal cells. How

ever, cellular N:P ratios have been reported to range from 5.1 to 25 

depending upon the taxon and the environmental conditions to which the 

cells are exposed (Parsons et , 1961; Davis, 1976; McCarthy, 1980; 

Rhee, 1978; Rhee and Gotham, 1980). Generally optimum cellular N;P 

ratios appear to be high in green algae and low in diatoms (Rhee and 

Gotham, 1980). 

Little information exists describing optimum cellular P:Si ratios 
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for diatoms. Parsons et (1961) reported P:Si ratios in Skeletonema 

costatum and Coscinodiscus sp. to be 0.19 and 0.02, respectively. 

Davis (1976), in a study of Si-limited cultures of Skeletonema costatum 

exposed to various light intensities, reported values which ranged from 

0.27 to 1.2. 

Whether lipid or carbohydrate is the photosynthetic reserve product 

of diatoms has long intrigued algal researchers. For many years, lipid 

(oil) was considered to be the only storage product of diatoms. The dis

covery that diatoms accumulated a 3-1,3 linked glucyopyranoside during 

photosynthesis led some researchers to believe that carbohydrate was the 

main storage product. Most likely, diatoms can store both lipid and 

carbohydrate as photosynthetic reserve products with the exact abundance 

of each product dependent upon the physiological state of the cells 

(Barker, 1935; Fogg, 1956; Badour and Gergis, 1965). 

Carbohydrate in diatoms is present primarily as reserve poly

saccharides and cell wall constituents (Fogg, 1953). The principal 

monosaccharides are glucose, galactose, mannose, ribose, xylose, 

rhamnose, and fucose with glucose representing the greatest percent of 

total carbohydrate (Darley, 1977). Chrysolaminaran (leucosin) is the 

principal polysaccharide of diatoms and chrysophytes. It was first 

isolated from diatoms by von Stosch (1951). Beattie et (1961) and 

Ford and Percival (1965) reported that chrysolaminaran consists of 

approximately 12 3-1,3 and 3-1,6 linked glucose units in a ratio of 

11:1. Chrysolaminaran is similar to laminaran, the photosynthetic re

serve product of brown algae, but possesses a smaller ratio of 3-1,3 to 
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3-1,6 linkages (11:1 vs. 15:1), a smaller glucose chain length (12 vs. 

16), and lacks the terminal mannitol residues. 

Chrysolaminaran has been identified as a photosynthetic reserve 

product in diatoms and chrysophytes. It was the radioactive product 

formed during photosynthesis in chrysophytes after exposure to 

(Kauss, 1962). Coombs and Volcani (1968) noted that the "main labelled 

soluble carbohydrate" after uptake by Navicula pelliculosa was a 

glucan. Handa (1969), in an analysis of carbohydrate metabolism, re

ported that the B-1,3 glucan of Skeletonema costatum was consumed during 

the dark. 

Chrysolaminaran has been reported to accumulate in membrane-bound 

vesicles outside of, and directly abutting, the chloroplast (Duke and 

Reimann, 1977; Lee, 1980). Although chrysolaminaran can comprise 15 to 

20% of the mass of the cell (Meeuse, 1962), it has rarely been men

tioned in electron microscope studies of diatoms (Duke and Reimann, 

1977). This is because chrysolaminaran is dissolved during the fixa

tion and embedding process. 

Lipids are broadly defined as materials which are soluble in 

organic solvents and are essentially insoluble in water (Stryer, 1981). 

The lipid composition of diatoms resembles that of green algae and high

er plants. Lipid components of diatoms include triglycerides, 

sulfoquinavosyl diglyceride, digalactosyl diglyceride, monogalactosyl 

diglyceride, lecithin, phosphatidyl inositol, phosphatidyl glycerol, 

phosphatidyl ethanolamine, brassicosterol, clionosterol, and chondrillo-

sterol (Low, 1955; Kates and Volcani, 1966; Kates and Volcani, 1968; 
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Tornabene et , 1974). 

Fatty acids are esterfied with glycerol (or other alcohols) to 

form the principal building blocks of polar and nonpolar lipids (Fisher 

and Schwarzenbach, 1978). Polar lipids, such as phospholipids, sulfo-

lipids, and galactosyl lipids, are the major constituents of cell and 

organelle membranes. Most non-polar lipids are triglycerides (Otsuka 

and Morimura, 1966). Non-polar lipids serve as a photosynthetic re

serve product (Fisher and Schwarzenbach, 1978) and accumulate in mem-

brane-bound lipid "bodies" (Darley, 1977). Lipid "bodies" have been 

found in the chloroplast near the pyrenoids, in the central vacuole, 

and scattered throughout the cytoplasm (Drum, 1963; Stoermer et al., 

1964; Stoermer et , 1965; Crawford, 1973; Dawson, 1973; Duke and 

Reimann, 1977). 

Fatty acid composition varies among algal groups. Diatoms char

acteristically possess fatty acids that have carbon chain lengths rang

ing from 12 to 22 (Ackman and Tocher, 1968; Wood, 1974). Diatoms 

generally possess large amounts of tetradecanoic (C-j^^.g), hexadecanoic 

(C^g.g), hexadecenoic (C^g.^)» eicosatetraenoic (Cg^.^) and eico-

sapentanaenoic (Cgg.g) and small amounts of hexadecadienoic (Cjg.2)» 

hexadecatrienoic (C^g.^), octadecenoic octadecadienoic (C^g.g), 

and ocatdecatrienoic (C^g.g) acids (Ackman et , 1964; Brockerhoff 

et , 1964; Kates and Volcani, 1966; Ackman and Tocher, 1968; Kates 

and Volcani, 1968; Pugh, 1971; DeMort et al., 1972; Opute, 1974a; 

Tornabene e^, 1974; Fisher and Schwarzenbach, 1978). 

Several researchers have indicated that the biochemical composition 
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of algae is variable and dependent on the cellular growth stage. In 

exponentially growing populations, the main biochemical "product" is 

protein (Olive et £j_., 1969). Darley (1977) stated that in "nutrient 

sufficient cells, protein content almost always exceeds carbohydrate 

content, which, in turn, usually exceeds the lipid content." Morris 

(1981) reported the amount of cellular protein in exponentially-growing 

diatom cultures ranged from 17 to 35% of the cell dry weight. The 

amount of cellular carbohydrate and lipid ranged from 4 to 20% and 2 

to 7%, respectively. 

Researchers have reported algal fatty acid composition to vary as 

cells age. ColIyer and Fogg (1955) reported the amount of fatty acid 

per culture increased or decreased with age depending upon the taxon. 

Pugh (1971) reported an increase in fatty acids that have carbon chain 

lengths of 18 as cells age. Dodecanoic acid (C^g.^) decreased with cell 

senescence. Ackman et (1964) noted that tetradecanoic acid (Cj^.g) 

increased and eicosapentaenoic acid (CgQ.g) decreased as cells age. 

The amount of cellular carbohydrate and lipid is greater in 

senescent cells than in actively-growing cells (Badour and Gergis, 

1965; Handa, 1969; Opute, 1974b; Conover, 1975). The amount of cellular 

protein remains constant (Badour and Gergis, 1965; Handa, 1969) or de

creases (Myklestad and Haug, 1972; Conover, 1975) with cell senescence. 

The amount of cellular chlorophyll content is lower in senescent cells 

than in young, actively-growing cells (Antia et^., 1963; Ackman and 

Tocher, 1968). 

Algal physiology and biochemistry have been reported to be affected 
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by the Si, N, and P concentrations of the growth medium. Diatom cell 

division is inhibited as Si is depleted from the medium (Eppley, 1977). 

In a Si-starved culture of Navicula pelliculosa, cell division stopped 

but cellular morphological development continued until the culture 

consisted mostly of biprotoplastic cells (two daughter protoplasts con

tained within a parent frustule, each surrounded by a new plasmalemma 

and separated by an intercellular space). In these cells, the rate of 

carbon and P uptake was lower than that in Si-replete conditions 

(Coombs et , 1967a,b; Coombs and Volcani, 1968). 

Diatoms show a gradual decrease in major metabolic activity as 

Si becomes limiting (Darley, 1977). Protein, chlorophyll, carbohydrate, 

and nucleic acid synthesis are partially, or completely, inhibited. 

Lipid synthesis increases as Si becomes limited (Coombs et , 1967a,b; 

Healey et 1967; Coombs and Volcani, 1968). Darley (1977) noted a 

60 to 70% reduction in glycolysis when Cyclotella cryptica cells were 

transferred to Si-deficient media. The rate of fatty acid synthesis, 

however, increased by greater than 100%. 

When Si is introduced into Si-starved cultures, a reduction in cell 

lipid synthesis and an increase in cell carbohydrate, protein, and DNA 

synthesis occurs. Repletion of Si also causes an increase in cell 

nucleosidetriphosphate and a resumption of cell division (Coombs et al., 

1967a; Coombs and Volcani, 1968; Darley, 1969; Darley, 1977). 

The effects of N limitation on algal cells have been well-documented. 

Eppley and Renger (1974) and Opute (1974b) observed a reduction in photo-

synthetic efficiency when actively-growing cells were exposed to N 
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limitation. The amount of cellular lipid of diatoms and green algae 

also increased as N becomes limiting (Fogg, 1956; Badour and Gergis, 

1965; Richardson et , 1969; Werner, 1977; Shifrin and Chisholm, 

1981; Rosen, 1982; Bergeron et al_., 1983). Collyer and Fogg (1955) 

stated that accumulation of lipid is not associated with low cellular N 

in red and blue-green algae. However, de Vasconcelos and Fay (1974) 

reported increased lipid content in a blue-green alga during N starva

tion. 

The amount of fatty acids in algal cells has been reported to in

crease as N becomes limiting (Zhukova et , 1968; Klyachko-Gurvich 

et , 1969). Cells exposed to N limitation predominantly possess 

large concentrations of saturated or monounsaturated fatty acids that 

have carbon chain lengths of 16 and 18. Cells exposed to high concen

trations of N predominantly possess polyunsaturated fatty acids that 

have carbon chain lengths of 16 and 18 (Ackman et , 1964; Matsuka 

et ^., 1966; Klyachko-Gurvich e;t ^., 1969; DeMorte;t^., 1972; 

Pohl, 1974). 

The amount of cellular carbohydrate in diatoms and green-algae 

has also been reported to increase as N becomes limiting (Matsuka et 

al., 1966; Klyachko-Gurvich et , 1969; Myklestad and Haug, 1972; 

Werner, 1977). The amount of cellular protein and chlorophyll has been 

observed to decrease as N becomes limiting (Fogg, 1956; Matsuka et al., 

1966; Thomas and Dodson, 1972; Eppley and Renger, 1974; Morris et al., 

1974; Myklestad, 1974; Syrett, 1981). Syrett (1981), however, reported 

a study of Thalassiosira in which N deprivation caused a decrease in 



www.manaraa.com

13 

photosynthetic rate but little change in the amount of cellular chloro-

phyl1. 

The biochemical composition of algae is also affected by P 

limitation. Researchers observed an accumulation of cellular lipid 

and carbohyrate only after all cellular P reserves had been utilized 

(Kuhl, 1974; Werner, 1977; Rosen, 1982). Rosen (1982) reported a de

crease in the amount of cellular chlorophyll of Cyclotella meneghiniana 

as P becomes limiting. Spoehr and Milner (1949) observed no biochemi

cal differences between P-stressed and P-sufficient cells of Chlorella. 
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METHODS 

Cells of Cyclotella meneghiniana Kutz. were collected from the Des 

Moines River (Boone County, lA) on 18 May, 1982. Several cells were 

isolated into soil water extract (Nichols, 1973) using a micropipette. 

A clonal culture was obtained by washing cells through 4 distilled water 

baths and reisolating a single cell into a defined medium (Table 1). 

This clone was used in all subsequent cultures. Diatoms were grown in 

350 ml of culture media in 500 ml, polycarbonate, Erlenmeyer flasks. 

Cultures were maintained in a Percival Growth Chamber (Boone, lA) at 

18 ± 2°C. Six parallel 40-watt cool white fluorescent lamps alternated 

with 5 34-watt warm white incandescent lamps provided approximately 450 

foot candles of illumination (approximately 0.1 mMoles photons-(M )~ • 

day"^). Cultures were exposed to a 16:8 hr light:dark cycle in an 

attempt to obtain synchronously-dividing cultures and thus minimize cell 

variability (Cook, 1961). Diatom cultures were shaken daily to keep 

cells suspended in the medium. 

Cyclotella cultures were unialgal, but not axenic. To minimize 

further contamination of the cultures, sterile techniques and equipment 

were utilized throughout the study. Glass, double-distilled water was 

used in the preparation of the culture media. Media solutions minus 

vitamins were prepared for maintenance cultures by autoclaving the solu

tion 15 minutes at 250°C. Vitamins were added aseptically with a Gelman 

0.2 ym mesh Acrodisc filter assembly attached to a syringe. For nutri

ent-starvation experiments, the treatment media were filtered through a 

Gelman 0.2 ym mesh Metricel membrane filter into a sterilized flask. 
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Table 1. Composition of culture medium: modified from Guillard and 
Lorenzen (1972) and Rosen (1982) 

Nutrient mg/liter Nutrient mg/liter 

Macronutrients: Micronutrients: 

CaCl2'2H20 36.76 Nag'EDTA 4.36 

MgS04'7H20 36.97 FeCl3-6H20 3.15 

NaHCOg 12.60 CUS04-5H20 0.01 

K^HPOs^'b 8.71 ZnS04*7H20 0.022 

NaNOgC'd 85.01 CoCl2'6H20 0.01 

NaSiO?'9HpOG'f 28.42 MnCl2'4H20 0.18 

NaCl 584.50 Na2Mo04*2H20 0.006 

KgHCOgS 6.91 H3BO3 1.0 

Vitamins: Buffer: 

Thiamine*HCl 0.1 Tri s(hydroxymethy1) -

Biotin 0.0005 aminomethane 500.00 

Cyanocobalamin 0.0005 

^Omitted from P-deficient cultures in nutrient starvation 
experiments. 

^Used at 1/lOth strength in P-limited media in nutrient stressed 
experiments. 

''Omitted from N-deficient cultures in nutrient starvation 
experiments. 

^Used at 1/lOth strength in N-limited media in nutrient stressed 
experiments. 

^Omitted from Si-deficient cultures in nutrient starvation 
experiments. 

^Used at 1/lOth strength in Si-limited media in nutrient stressed 
experiments. 

^Used in P-deficient cultures. 
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Treatment media in nutrient-stressed experiments were prepared and auto-

claved in 2.5 liter polycarbonate bottles. Vitamin concentrations in 

these bottles were increased 2.5-fold over normal strength to overcome 

degradation of vitamins during autoclaving. 

Experimental Design 

Diatom cultures were subjected to Si-, N-, and P-starvation and to 

Si-, N-, and P-stressed experiments. In nutrient-starvation experiments, 

diatom cells were removed from nutrient-replete batch cultures and re-

suspended in nutrient media with either NaSiOg-gHgO, NaNOg, or K^HPO^ 

omitted. Since the only potassium source normally in tha medium was 

KgHPOg, P-deficient media would have lacked potassium also. Therefore, 

an appropriate amount of potassium was added to the P-deficient media 

in the form of KgHCOg (Table 1). 

In nutrient-starvation experiments, a 2 factorial experimental de

sign in fractional replication (Cochran and Cox, 1957) was used. In this 

type of design, the three nutrients in various combinations produced 8 

possible nutrient treatments (Table 2). However, due to the number of 

variables analyzed per flask and the number of flasks considered, all 8 

treatments could not be analyzed collectively. Rather, only half of the 

total treatments were considered at one time. Each pair of 4 treatments 

(hereafter referred to as a half-replicate) was selected to minimize 

experimental "confounding" of nutrient effects (Table 2). The 2 half-

replicates were then put together to make a single replication of the 

factorial design. 

In a single replication of the 2 factorial design, each nutrient 
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Table 2. Nutrient combinations in media treatments for nutrient-
starvation experiments. Presence or absence of a nutrient 
is indicated by a plus (+) or minus (-). Half-replicates 
analyzed collectively are indicated by presence or absence 
of an asterisk (*) 

Nutrient 
Treatment 

Silica Nitrogen Phosphorus 

1 - -

2* + -

3* - + 

4 + + -

5* - - + 

6 + - + 

7 _ + + 

8* + + + 
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effect was an average over 4 combinations of other factors and had, in 

effect, 4-fold replication (Cochran and Cox, 1957). Variable means for 

nutrient deficient effects were calculated using treatments in which 

the nutrient under consideration was omitted. Variable means for nutri

ent-replete effects were calculated using treatments in which the nutri

ent under consideration was present. 

A schematic representation of the experimental procedure used in 

nutrient-starvation experiments is presented in Fig. 1. For each half-

replicate, 10 culture flasks containing nutrient sufficient media were 

inoculated with equal amounts of cells from a maintenance culture. 

Cultures were placed in the growth chamber and allowed to grow until 

cell density reached approximately 14,000 cells/ml. At this density, 

cell division was still occurring, but at a much reduced rate than cells 

of cultures undergoing exponential growth. 

Two of the flasks were then analyzed. The day in which experi

mental analysis began was designated Day 0. The remaining 8 flasks 

were randomly divided into 4 pairs and each pair was assigned to 1 of 

the 4 possible media treatments in the half-replicate considered. The 

entire volume of each flask was centrifuged at approximately 3,000 rpm 

for 4 minutes. Centrifuged cells were washed 4 times in their assigned 

treatment medium and resuspended in flasks containing the appropriate 

treatment medium. Cultures were replaced in the growth chamber. 

Cultures were analyzed 3 and 9 days after transfer to treatment media, 

a time sequence used by Shifrin and Chisholm (1981). On day 3, 1 flask 

from each of the 4 treatment pairs was removed for analysis. On day 9, 
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Fig. 1. Schematic representation of the experimental procedure used for each treatment in nutrient-
starvation experiments 
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the four remaining flasks were analyzed. For the nutrient-starvation 

experiment, a single replication of the factorial design was completed. 

In nutrient-stressed experiments, semi-continuous culture tech

niques were used. Cultures were diluted by removing a certain percentage 

of the culture at regular intervals (hereafter referred to as dilution 

rate) and replacing it with an equal amount of fresh media. Call densi

ties of semi-continuous cultures are inversely proportional to the dilu

tion rate. A net decrease in cell density occurs when dilution rate is 

greater than growth rate. If dilution rate exceeds growth rate for a 

sufficient period of time, the cell population "washes out" of the 

culture flask. A net increase in cell density occurs when growth rate 

is greater than dilution rate. Cell density increases until dilution 

rate equals growth rate. Consequently, a steady-state cell density is 

achieved. At steady state, the population possesses a constant growth 

rate and constant mean biochemical characteristics. High dilution rates 

produce steady state populations possessing low cell densities and, 

therefore, a high nutrient supply per cell. Low dilution rates, in turn, 

produce steady-state populations possessing high cell density and a low 

nutrient supply per cell. By varying the dilution rate, the culture can 

be "held" at various points along its growth curve (Fogg, 1965). This 

allows analysis of the physiological and biochemical condition of 

steady-state populations along a nutrient gradient. 

The molar ratio of N;P:Si was 1.0:0.05:0.1 in media used for 

maintenance cultures. For nutrient-stressed experiments, culture media 

were prepared with the nutrient under investigation at 1/lOth normal 
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strength (Table 1). Preliminary experimentation indicated that cultures 

in media with Si, N, and P at 1/lOth normal strength were nutrient 

limited. Cell densities of cultures for all dilution rates were less 

than similarly diluted cultures using normal strength media. In this 

manner, the N:P:Si molar ratio was 1.0:0.05:0.01 in Si-stressed media, 

0.1:0.05:0.1 in N-stressed media, and 1.0:0.005:0.1 in P-stressed media. 

In each of the nutrient-stressed experiments, cells from a 

maintenance culture growing exponentially were centrifuged and washed 3 

times in the appropriate medium. Aliquots of the washed cell suspension 

were resuspended in 9 flasks containing nutrient stressed media. Cul

tures were placed in the growth chamber. Cells within the flasks were 

allowed to divide without interruption for 3 or 4 days, after which the 

dilution process was initiated. The 9 flasks were randomly divided into 

3 groups and a daily dilution rate of 10%, 25%, or 50% assigned to the 

groups. Dilutions were continued until a steady state cell density was 

determined by microscopic counting. When steady state conditions were 

reached, the daily supply of limiting nutrient per cell for flasks within 

a dilution rate was calculated (Table 3). Flasks were then analyzed. 

Sample Analysis 

Diatom cultures were analyzed for the amount of cellular lipid, 

glucan, protein, chlorophyll, and phaeophytin. Samples were obtained 

by centrifuging a known volume of the cultures at approximately 2,000 

rpm for 3 minutes. Examination of centrifuged material by phase con

trast microscopy revealed some bacteria, but their biomass was insig

nificant in comparison to that of diatom cells. Samples for glucan 
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Table 3. Supply of limiting nutrients per cell per day for dilution 
rates of media in nutrient-stressed experiments. Means and 
standard errors (in parentheses) for replicate flasks are 
presented 

L.nitmg nutrient x W') 

10 0.140 (± 0.009) 

Silica 25 0.449 (± 0.051) 

50 1.178 (± 0.147) 

10 0.126 (± 0.012) 

Ni trogen 25 0.868 (± 0.012) 

50 3.475 (± 0.137) 

10 0.013 (± 0.002) 

Phosphorus 25 0.064 (± 0.014) 

50 0.434 (± 0.019) 
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analysis were obtained by filtering a known volume of culture directly 

onto Whatman 934-AH glass microfibre filters. Culture cell densities 

were determined by microscopic counting techniques utilizing a Palmer-

Maloney chamber (Guillard, 1973). 

Total lipid was extracted from diatom samples by aqueous alkaline 

hydrolysis (modified from Hammond et , 1981). Diatom cells were re-

fluxed for approximately 1% hours in 10 ml of 12% alcoholic KOH. The 

digested cells were cooled, adjusted to pH 3 with IN HCl, and diluted 

with 50 ml of distilled water. Ten ml of hexane was added to the reflux 

flask. The solution was mixed thoroughly and filtered through a Whatman 

GF/C glass microfibre filter to remove diatom frustules. The reflux 

flask was rewashed with 5 ml of hexane and the filtering repeated. The 

filtered solution was transferred to a separatory funnel fitted with a 

teflon stopcock. The hexane layer was allowed to separate, removed from 

the funnel, and transferred to a tared glass vial. The hexane was 

evaporated under N gas and the resulting residue and vial were weighed. 

Total lipid was expressed gravimetrically as lipid per cell. 

Total glucan was extracted and determined spectrophotometrically by 

the sulfuric acid-phenol method presented by Myklestad (1978). Total 

protein was determined by the "Lowry Method" (Lowry et al., 1951) using 

bovine serum albumin as a standard. Chlorophyll and phaeophytin values 

were determined by spectrophotometric methods (Richards with Thompson, 

1952) using the equations of Parsons and Strickland (.1963). Values for 

glucan, protein, chlorophyll, and phaeophytin were expressed on a per 

cell basis. Chlorophyll/phaeophytin (Chl/Ph), protein/glucan (P/G), 
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and lipid/glucan (L/G) ratios were also calculated. 

The fatty acid composition of lipid residues from cells grown in 

nutrient-stressed experiments was analyzed. The lipid residues for 

replicate samples within a supply rate were resuspended in hexane, 

pooled, and re-evaporated under N gas. The fatty acids were converted 

to fatty acid methyl esters (FAMEs) by adding 1 ml of 3% HgSO^ in 

methanol to the residue and heating in a teflon-sealed vial at 55°C for 

12 hours. After heating, 3 ml of distilled water and 1 ml of hexane 

were added to the vial. The solution was mixed and centrifuged. The 

hexane layer was removed and washed 3 or 5 times with distilled water 

to remove traces of methanol. The hexane was evaporated to near dryness 

to concentrate the FAMEs. One yl of sample was injected into a Beckman 

GC-5 gas chromatograph equipped with a 183 x 0.3 cm stainless steel 

column packed with 15% EGSSX on 100/120 mesh Chromosorb P (Applied 

Science Laboratories, State College, PA). The carrier gas was N at a 

flow rate of 50 ml/minute. The column temperature varied between 139° 

and 176°C, depending upon the date of analysis. Retention peaks of 

sample FAMEs were compared to standard FAME mixtures (Supelco, Inc., 

Bellefonte, PA) for identification. The fatty acid samples from P-

stressed experiments were inadvertently destroyed in preparation. 

Statistical Analysis 

For nutrient-starvation experiments, values of biochemical vari

ables and the calculated ratios for flasks on days 3 and 9 were com

pared by a factorial analysis using a split-plot, randomized block design 
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(Cochran and Cox, 1957). Since only cells that had been cultured in 

nutrient-sufficient media were used as inoculum for the experimental 

flasks, no comparison to nutrient-deficient treatments could be made 

for day 0. Therefore, values for this initial day of experimentation 

were not included in the statistical analysis. The sources of variation 

investigated in the factorial analysis are presented in Table 4. Half-

replicates were considered blocks. The significance of nutrient effects 

(Si, N, and P) and their 2-factor interactions (Si-N, Si-P, and N-P) were 

assessed by a Half-Normal Probability Plot (Daniel, 1959). 

For each nutrient-stressed experiment, values of biochemical vari

ables and the calculated ratios were compared in terms of nutrient 

supply rate by an Analysis of Variance (ANOVA) (Snedecor and Cochran, 

1980). The sources of variation investigated in the ANOVA are presented 

in Table 5. The effect of nutrient supply rate was subdivided to 

analyze for deviation from linearity. The significance between specific 

pairs of variable means was analyzed by a Least Significant Difference 

(LSD) analysis (Snedecor and Cochran, 1980). 
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Table 4. Sources of variation with their corresponding degrees of 
freedom investigated in the Factorial Analysis performed on 
variables of nutrient-starvation experiments 

Source of variation Degrees of freedom 

Fractional replicate 1 
Limiting nutrient (3) 

Silica 1 
Nitrogen 1 
Phosphorus 1 

Error (A)a 3 
Days 1 
Interaction (3) 

Days-Silica 1 
Days-Nitrogen 1 
Days-Phosphorus 1 

Error ( B ) b  4 

^(Silica-Nitrogen + Silica-Phosphorus + Nitrogen-Phosphorus). 
b(Days-Error (A) + Days-Fractional replicate). 

Table 5. Sources of variation and their corresponding degrees of 
freedom investigated in the Analysis of Variance performed 
on variables of nutrient-stressed experiments 

Source of variation Degrees of freedom 

Nutrient supply rate (2) 
Linear 1 
Quadratic 1 

Error (replicates) 6^ 

^Value expressed is based on 3 replicates per nutrient supply 
rate. 
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RESULTS 

The biochemical composition of the cells varied little throughout 

the nutrient-starvation experiments. The amount of cellular lipid (Fig. 
_ 0  1  

2) generally ranged from 2.0 to 4.0 x 10" yg-cell" . The amount of 

cellular lipid initially appeared to increase in cells grown in N-

sufficient media and decrease in N-deficient media. The amount of 

cellular glucan remained fairly constant (approximately 0.6 to 0.8 x 

10" yg-cell~ ) in all treatments (Fig. 3). The amount of cellular 

protein varied greatly between Si-sufficient and Si-deficient treatments 

(Fig. 4). In Si-deficient treatments, the amount of cellular protein 

increased from 3.1 to 5.3 x 10"^ ijg-cell"^ between days 0 and 3. The 

amount of cellular protein then remained constant until day 9. The 

amount of cellular protein in N and P treatments remained fairly con

stant (3.0 to 4.0 X 10"^ yg-cell"^) throughout the study. The amount 

of cellular chlorophyll varied little (1.0 to 1,25 x 10 ^ yg-cell 

throughout all nutrient treatments (Fig. 5). 

The calculated biochemical ratios also varied little throughout 

the nutrient-starvation experiments. Chl/Ph ratios remained fairly 

constant (approximately 1.7 to 2.5) over all treatments (Table 6). L/6 

ratios (Table 7) ranged from 1.5 to 7.0 with the majority of values 

approximately 5.0. P/G ratios ranged from 300 to 1900 among all nutri

ent treatments (Table 8). 

A factorial analysis using a split-plot, randomized block design was 

used to analyze the effects of half-replicates and nutrient effects on 
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Fig. 2. Changes in the amount of cellular lipid in silica, nitrogen, 
and phosphorus-sufficient (solid lines) and deficient (dashed 
lines) cultures through time. Values represent mean of four 
replicate flasks. Bars indicate standard error of the means 
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Fig. 3. Changes in the amount of cellular glucan in silica, nitrogen, 
and phosphorus-sufficient (solid lines) and deficient 
(dashed lines) cultures through time. Values represent 
mean of four replicate flasks. Bars indicate standard 
error of the means 
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Fig. 4. Changes in the amount of cellular protein in silica, 
nitrogen, and phosphorus-sufficient (solid lines) and 
deficient (dashed lines) cultures through time. Values 
represent mean of four replicate flasks. Bars indicate 
standard error of the means 
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Fig. 5. Changes in the amount of cellular chlorophyll in silica, 
nitrogen, and phosphorus-sufficient (solid lines) and 
deficient (dashed lines) cultures through time. Values 
represent mean of four replicate flasks. Bars indicate 
standard error of the means 
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Table 6. Chlorophyll/phaeophytin ratios for replicate flasks in nutri
ent-starvation experiments. Means of replicate flasks are 
presented 

Nutrient 
Nutrient Day 

availability ^ o 

Silica + 2.46 2.08 2.33 
1.84 2.16 

Nitrogen + 2.46 1.68 2.49 
2.24 2.00 

Phosphorus + 2.46 2.34 1.66 
1.57 2.82 

Table 7. Lipid/glucan ratios for replicate flasks in nutrient-starva
tion experiments. Means of replicate flasks are presented 

Nutrient Nutrient Day 
availability « , 

Silica + 5.13 5.06 1.51 
4.20 6.40 

Nitrogen + 5.13 6.97 2.37 
2.29 5.55 

Phosphorus + 5.13 4.46 2.62 
4.80 5.29 

Table 8. Protein/glucan ratios for replicate flasks in nutrient-
starvation experiments. Means of replicate flasks are pre-
sented 

^ — 
Silica + 377.88 303.27 255.16 

- 527.46 1926.31 

Nitrogen + 377.88 361.21 400.92 
- 434.52 1780.55 

Phosphorus + 377.88 386.32 440.69 
- 444.42 1740.78 
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biochemical variables and their calculated ratios between days 3 and 9 

(Appendix Table Al). The Half-Normal Probability Plot indicated no 

significant effect of 2-factor nutrient interactions on the biochemi

cal composition of the cells. Therefore, only the effects of individual 

nutrients were considered in the factorial analysis. 

In this factorial analysis, the fractional-replicate effect 

measured the variability of values between fractional replicates. This 

effect, in theory, measured the reproducibility of values between half-

replicates. Only the values for the amount of cellular protein were 

significantly different between the 2 half-replicates (p<0.05). The 

limiting-nutrient effect indicated the variability betv/een the mean of 

values on days 3 and 9 in nutrient-sufficient treatments and the mean 

of values on days 3 and 9 in nutrient-deficient treatments. Only Si had 

a significant effect on a biochemical variable. A significant increase 

in the amount of cellular protein occurred with Si deficiency. The 

effect of days measured the variability between the mean of values on 

day 3 and the mean of values on day 9. Interaction effects measured 

the variability between the difference of nutrient-deficient and 

nutrient-sufficient treatments on day 3 and this difference on day 9. 

Neither day nor day.nutrient interactions significantly affected any 

biochemical variable investigated. 

The biochemical composition of the cells varied in response to nutri

ent supply rate (dilution rate) within and between nutrient-stressed 

experiments (Figs. 6 to 8). An ANOVA was used to measure the effect of 

supply rate on the biochemical composition of the cells (Appendix Table 
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Fig. 6. The amount of cellular lipid, glucan, protein, and chlorophyll in silica-stressed 
cultures as a function of silica supply rate. Values represent mean of replicate 
flasks. Bars indicate standard error of the means 
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Fig. 7. The amount of cellular lipid, glucan, protein, and chlorophyll in nitrogen-stressed 
cultures as a function of nitrogen supply rate. Values represent mean of replicate 
flasks. Bars indicate standard error of the means 
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Fig. 8. The amount of cellular 
cultures as a function 
flasks. Bars indicate 

lipid, glucan, protein, and 
of phosphorus supply rate, 
standard error of the means 

chlorophyll in phosphorus-stressed 
Values represent mean of replicate 
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A2). A LSD analysis was used to test the significance between specific 

pairs of variable means within an experiment (Table 9). 

The LSD analysis indicated that increasing Si supply rate caused 

a significant decrease in the amounts of cellular lipid and protein and 

cellular L/G ratios. However, the ANOVA revealed no significant effects 

of Si supply rate on any variable except the L/G ratio (p<0.05). 

Cellular L/G ratios decreased from 2.6 to 1.2 between 0.140 and 0.449 x 

— 7 — 1 -1 
10" mg Si'cell" -day" but remained constant between 0.449 and 1.178 x 

10"^ mg Si-cell"^-day~^. 

The LSD analysis indicated that increasing N supply rate caused 

significant increases in the amount of cellular lipid, glucan, protein, 

and chlorophyll. The ANOVA revealed significant effects of N supply 

rate on all of these variables except chlorophyll (p<0.001). The amount 
_ q — 1 

of cellular lipid remained constant (approximately 3.4 x 10" yg-cell" ) 

between 0.126 and 0.868 x 10"^ mg N-cell'^-day"^ but increased to 9.6 x 

10" yg at 3.475 x lO" mg N-cell" -day" . The amount of cellular glucan 
— 1 

remained constant (approximately 1.1 x 10" yg*cell" ) between 0.126 and 

0.868 x 10"^ mg N-cell"^'day"^ but increased to 3,3 x 10"^ yg at 3.475 x 

10"^ mg N-cell"^-day"^. The amount of cellular protein increased from 

1.95 to 4.11 x 10 ^ yg-cell ^ between 0.126 and 0.868 x 10 ^ mg .. 

N-cell~^-day"^ to 6.7 x 10~^ yg-cell"^ at 3.475 x 10 ^ mg N-cell ^-day \ 

The LSD analysis indicated that significant increases in the amount 

of cellular lipid and glucan occurred with increasing P supply rate. 

The ANOVA also indicated significant increases in the amount of cellular 

lipid (p<0.001) and glucan (p<0.001). The amount of cellular lipid 
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Table 9. Mean values of the cellular biochemical composition and the cellular biochemical 
ratios for nutrient supply rates in nutrient-stressed experiments 

Limiting 
nutrient 

Supply 
rate 

(mg X10"': 

Cellular composition 

^mgxiu Lipid biucan rrotein nhvii tnioropnyii/ rroiein/ Lipia/ 
cell-1.day-') (ygxlO-3) (ygxl0~3) (ygxlO-3) (^qy^Q-3) Phaeopnytin Glucan Glucan 

Glucan. Protein Chloro-
Cellular ratio 

Chlore iphyll/ 
•hy ti n 

Protein/ Lipid/ 

0.140 8.623 3.33 2.13a 0.95 No data 68.4 2.6a'b 

Silica 0.449 5.37a 4.79 1.17a 1.05 No data 28.1 1.2% 

1.178 6.60 5.45 1.33 0.94 No data 30.4 1.3b 

0.126 2.10a 0.66^ 1.95a 0.9ia 7.1 298.7 3.1 

Nitrogen 0.868 4.67b 1.58^ 4.11*'b 1.20* 5.1 263.4 3.0 

3.475 9.63*'b 3.33^'b 6.71®'^ 1.03 5.3 211.7 3.0 

0.013 2.59a 0.72® 2.56 0.75 No data 363.6 3.9 

Phosphorus 0.064 2.68^ 1.09b 3.73 1.04 No data 363.6 2.6 

0.434 7.358'^ 3.49*'b 4.24 1.05 No data 121.8 2.1 

^'^Variable means within a nutrient category with similar superscripts are significantly 
different (p<0.05). 
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remained constant (approximately 2.63 x 10"^ yg'cell"^) between 0.013 

7 -1 —1 
and 0.064 x 10" mg P-cell" "day" . The amount of cellular glucan re-

-1 
mained constant (approximately 0.91 x 10" yg^cell" ) between 0.013 and 

-7 -1 -1 -3 -1 
0.064 X 10 mg P-cell -day but increased to 3.5 x 10 yg-cell 

at 0.434 X 10"^ mg P-cell'^-day"^. 

The fatty acids of lipid extracted in N-stressed and Si-stressed 

experiments were tetradecanoic (C^^.q)» pentadecanoic (C^g.g)» hexa-

decanoic (Cjg.g)» heptadecanoic (Cjy.gjs heptadecanoic-branched 

(Ci7:branched)' octadecanoic (C jq.q). octadecenoic (C^g.}), octa-

decadienoic (C^^.g), octadecatrienoic (C^g.g), eicosanoic (C^Q.Q), 

eicosenoic (Cg^.^), eicosatetraenoic (Cgg.^), docosadienoic {^22-2^' 

docosatetraenoic (022.4)» and tetracosanoic (C24.Q). Although FAME 

samples were washed several times with distilled water, there was, 

probably, a retention of methanol in the sample. This caused a gradual 

slope off the solvent peak during gas chromatographic analysis which did 

not allow the area under the FAME retention peaks to be measured. 

Therefore, the relative percentage of each FAME in the lipid sample could 

not be calculated. Rather, only the presence or absence of a FAME could 

be determined. 

The fatty acid composition of the extracted lipid differed little 

among nutrient supply rates within an experiment but was distinctly 

different between N-stressed and Si-stressed experiments (Tables 10 and 

11). In the N-stressed experiment, carbon chain length of fatty acids 

ranged from 14 to 24. Except for the absence of ^17-0' ^24*0 

at 0.126 X 10"^ mg N*cell~^*day"^ and CgQ.^ and at 0.868 x 10"^ 
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Table 10. Fatty acid composition of Cyclotella meneqhiniana for 
supply rates of nitrogen-stressed cultures. Presence of 
a fatty acid is indicated by a plus (+) 

Fatty acid 
Supply rate (x 10"^ mg N-ceir^ -day"^) 

Fatty acid 
0.126 0.868 3.475 

14:0® + + 
15:0 + 
16:0 + + + 

17:branched + + 
17:0 + 
18:0 + + + 
18:1 + + + 
18:2 + + + 
20:0 + + 
20:1 (or 2) + + + 
20:4 (or 5) + + 
22:2 + + + 

22:4 ? + + + 
24:0 ? + 

^Shorthand notation for carbon chain length:number of double 
bonds. 

Table 11. Fatty acid composition of Cyclotella meneghiniana for 
supply rates of silica-stressed cultures. Presence of a 
fatty acid is indicated by a plus (+) 

Fatty acid 
Supply rate (x 10"^ mg S i - c e l l - d a y " ^ )  

Fatty acid 
0.140 0.449 1.178 

14:0® + + + 
15:0 + 
16:0 + + + 

17:0 + + + 
18:0 + + + 

18:1 + + + 
18:2 + + 

^Shorthand notation for carbon chain length:number of double 
bonds. 
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mg P.cell'^-day"^, al 1 of the aforementioned fatty acids were observed 

•7 -1 —1 
at these two nutrient supply rates. At 3.475 x 10" mg N-cell" «day" , 

fatty acids with a low carbon chain length (e.g. to C^y) were, for 

the most part, absent. 

In contrast, the fatty acids in the Si-stressed experiment were 

limited to low carbon chain lengths to C^g). In addition, there 

was a preponderance of FAMEs with retention times less than that associ

ated with These peaks were, most likely, FAMEs with carbon chain 

lengths of 10 to 13. Since the standard samples used did not possess 

FAMEs with carbon chain lengths less than 14, no definite identifica

tion of these fatty acids could be made. Fatty acids at 0.140 and 

0.449 X 10"^ mg Si.cell"^ .day"^ ranged from to C^g.g. was 

absent in the extracted lipid at 0.449 x 10"^ mg Si'cell'^.day"^. At 

1.178 X 10"^ mg Si-cell'^.day"^, C^^.q and C^g.g were absent from the 

extracted lipid. 
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DISCUSSION 

Researchers have reported that algae accumulate storage products 

when exposed to nutrient limitation (Fogg, 1956; Coombs et , 1967a,b; 

Darley, 1977; Shifrin and Chisholm, 1981). However, in this study, 

accumulation of storage products by C^. meneghiniana varied with the 

type and degree of nutrient limitation. In addition, the statistical 

significance of nutrient-limitation effects on the biochemical composi

tion of the cells varied with the culture design used. 

A reduction in the amount of cellular carbohydrate, protein, and 

chlorophyll and an increase in the amount of cellular lipid has been 

reported to occur in diatoms with increasing Si limitation (Werner, 

1977). In this study, the LSD analysis indicated some increases in 

the amount of cellular lipid and protein as Si becomes limiting. How

ever, Snedecor and Cochran (1980) suggested that the LSD analysis should 

be used to claim significance between variable means only if the "F 

test" is significant. Therefore, the LSD analysis was considered 

applicable only if the ANOVA indicated a significant difference between 

variable means among nutrient supply rates. The ANOVA indicated that 

only L/G ratios were significantly different among Si supply rates. 

The significant decrease in cell L/G ratios with increasing Si 

supply rate indicated a shift from glucan to lipid accumulation as Si 

becomes limiting. While the ANOVA did not indicate a significant dif

ference in the amount of cellular lipid and/or glucan among Si supply 

rates, it is possible that the shift from glucan to lipid accumulation 

occurs at a particular Si concentration. In the nutrient-stressed 
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experiments, the use of only 3 distinct supply rates may have restricted 

the ANOVA from redefining lipid differences above and below this 

threshold concentration. In this study, the threshold concentration 

—7 —1 -1 
appeared to be between 0.140 and 0.449 x 10~ mg Si-cell" -day" . 

Future studies should investigate cellular lipid accumulation over this 

range. 

The amount of cellular lipid of C^. meneghiniana significantly in

creased with increasing N supply rate. This is in contrast to results 

from researchers who observed lipid accumulation with N limitation 

(Fogg, 1956; Badour and Gergis, 1965; Richardson et , 1969; Werner, 

1977; Shifrin and Chisholm, 1981). However, several researchers have 

observed results similar to those reported in this study. Collyer and 

Fogg (1955) stated that N concentration had no direct effect on fat 

accumulation in certain algae. Fogg (1956) stated that when fat-pro-

ducing, N-deficient cells of Navicula pelliculosa underwent N repletion, 

fat accumulation continued. Badour and Gergis (1965) noted fat accumu

lation in Nitzschia sp. at times when N was not deficient. 

The amount of cellular glucan of £. meneghiniana significantly in

creased with increasing N supply rate. In contrast, Myklestad and Haug 

(1972) observed a decrease in carbohydrate in Chaetoceros affinis var. 

willei with increasing N concentration. In this study, no significant 

differences in the amount of cellular glucan were observed between N-

sufficient and N-deficient batch cultures. 

Because of the essential role of N in amino acids and chlorophyll, 

N limitation might be expected to cause a decrease in the amount of 
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cellular protein and chlorophyll. However, no significant differences 

in the amount of cellular protein or chlorophyll were noted between 

N-sufficient and N-deficient batch cultures. However, decreasing N 

supply rate in the nutrient-stressed experiment did cause a significant 

decrease in cellular protein. 

Decreasing P supply rate caused a significant reduction in the 

amount of cellular lipid and glucan. This contrasts with reports from 

several researchers (Kuhl, 1974; Werner, 1977; Rosen, 1982) who ob

served an accumulation of lipid and carbohydrate in algal cells as P 

becomes limiting. Rosen (1982) also noted a decrease in the amount of 

cellular chlorophyll of £. meneghiniana as P becomes limiting. In this 

study, a significant decrease in the amount of cellular chlorophyll as 

P becomes limiting was not observed. 

Chloroplast ultrastructure has been reported to be differentially 

affected by Si, N, and P limitation (Butler and Simon, 1971; Duke and 

Reimann, 1977; Hurkman, 1979; Rosen, 1982). It might be expected that 

the ratio of cellular chlorophyll to its breakdown product, phaeophytin, 

would decrease as nutrients become limiting. However, no significant 

differences in the ratios were noted between nutrient-sufficient and 

nutrient-limited cultures. This observation agrees with results of 

a previous study dealing with the effects of nutrient deficiency on £. 

meneghiniana (Rosen, 1982). Rosen stated that "If adjustments to light 

intensity and nutrient deficiency were occurring through the degrada

tion of chlorophyll, they did not appear to be through the creation of 

phaeophytin." In addition. Marker et (1980) noted that phaeophorbid, 
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rather than phaeophytin, is the major naturally-occurring breakdown 

product of chlorophyll and little is known of its spectral character

istics. 

Negative phaeophytin values were calculated for several replicate 

cultures within supply rates of the N-stressed and P-stressed experi

ments. These values, in turn, produced negative Chl/Ph ratios which 

were omitted from further analysis. The negative values might have 

occurred because of improper acidification procedures prior to spec-

trophotometric readings or to extremely variable absorbance readings. 

Cell densities of cultures in the nutrient-stressed experiments were 

much less than cell densities of cultures in the nutrient-starvation 

experiments. The low chlorophyll concentrations resulting from the low 

cell densities produced spectrophotometric readings consistently below 

0.1 absorbance. Since absorbance readings are relatively inaccurate at 

levels below 0.1 (A.P.H.A. et aj^. » 1971), extreme variability among 

replicate samples could have occurred. Therefore, if these values were 

substituted into the defined equations for determination of chlorophyll 

and phaeophytin concentrations, highly inaccurate values could have 

resulted. 

Myklestad and Haug (1972) considered the protein/carbohydrate ratio 

to be a valuable indicator of the physiological state of the cell. In 

rapidly-growing cells, most cellular carbon is incorporated into pro

tein. In times of stress, more cellular carbon is incorporated into 

storage products (lipid and carbohydrate) and protein synthesis is re

tarded (Cook, 1961; Mylkestad and Haug, 1972; Weete, 1980). Therefore, 
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high P/G ratios would be expected in healthy, nutrient-sufficient cells 

and low P/G ratios in stressed, nutrient-limited cells (Myklestad and 

Haug, 1972; Sakshaug and Myklestad, 1973; Myklestad, 1974). In this 

study, no significant differences in P/G ratios were noted in any 

experiment. 

Carbon chain lengths of fatty acids generally ranged from 14 to 24. 

This is in agreement with results of previous studies on diatom fatty 

acids (Ackman and Tocher, 1968; Wood, 1974; Fisher and Schwarzenbach, 

1978). No distinct differences in fatty acid composition were noted 

among supply rates within Si-stressed and N-stressed cultures. However, 

distinct differences in fatty acid composition were observed between Si-

stressed and N-stressed cultures. The cultures exposed to Si stress did 

not possess fatty acids that have carbon chain lengths greater than 18. 

The cultures exposed to Si stress also possessed fatty acids that have 

carbon chain lengths less than 14. The cultures exposed to N stress 

did possess fatty acids that have carbon chain lengths greater than 18. 

In addition, a greater amount of unsaturated acids was observed in N-

stressed cultures than in Si-stressed cultures. 

The synthesis of long chain fatty acids from COg involves the 

sequential addition of 2 carbons to the growing fatty acid chain utiliz

ing the enzyme complex. Fatty Acid Synthetase (FAS). This elongation 

process stops at the formation of hexadecanoic acid (C^g.g) (Stryer, 

1981). Subsequent elongation of the fatty acid chain into longer carbon 

chain lengths and/or unsaturation involves several enzymatic systems 

besides FAS. The FAS or the additional enzyme systems may have been 
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blocked, in some manner, by Si stress, thereby preventing formation of 

long carbon chain, saturated fatty acids. 

Algae are reported to possess large amounts of unsaturated fatty 

acids (Otsuka and Morimura, 1966; DeMort et , 1972; MacCarthy and 

Patterson, 1974a,b; Opute, 1974a; Pohl, 1974; Fisher and Schwarzenbach, 

1978). Since long chain unsaturated acids are believed to be involved 

in photosynthetic reactions and are essential components of diatom 

cell membranes (Kates and Volcani, 1966; Opute, 1974a; Tornabene et al., 

1974), it appears that Si stress caused a greater disruption^ of £. 

meneghiniana's lipid composition than did N stress. In addition, a 

predominance of fatty acids that have carbon chain lengths less than 

14 has also been observed in marine diatoms exposed to Si stress (Larry 

Raymond, Solar Energy Research Institute, personal communication). 

However, the current study did not quantitate the fatty acids of the 

extracted lipids and the mere presence or absence of an acid may not 

provide a realistic appraisal of the actual fatty acid dynamics. In 

addition, researchers (Ackman and Tocher, 1968; Orcutt and Patterson, 

1974) have proposed that changes in the fatty acid composition of a 

cell reflects changes in the type of lipid. Therefore, "it is really 

necessary to consider the fatty acids of each individual group of lipids 

and their changes, rather than the fatty acids in toto, before a proper 

interpretation of nutrient-linked changes in the fatty acid composition 

of a cell can be made" (Pugh, 1971). 

The exact reason for the biochemical response of C^. meneghiniana 

to Si, N, and P limitation is not known. Coombs and Volcani (1968) 
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reported researchers who suggested that Si limitation leads to a re

duction in Si-containing compounds essential to the metabolism of the 

cell. However, several researchers (Coombs et , 1967a; Darley, 

1969; Darley, 1977) theorized that the biochemical response to Si 

limitation results from cessation of growth prior to cell division. 

Cells of cultures in exponential growth would develop into mature 

cells or progress to a biprotoplastic stage before Si deficiency in

hibited their development. Cellular constituents would accumulate in 

the biprotoplastic cells since these cells have more of their division 

cycle to complete than do the older, mature cells (Darley, 1969). A 

biochemical response associated with Si limitation may, therefore, simply 

"reflect the percentage of morphologically arrested cells in the cul

ture" (Coombs et ^., 1967a). Darley and Volcani (1969) supported this 

hypothesis as they observed a decrease in the overall energy metabolism 

and net biosynthetic capacity with the presence of biprotoplastic 

cells in Si-deficient, diatom cultures. This hypothesis might explain 

the increase in cellular protein in Si-deficient batch cultures of 

meneqhiniana. 

Researchers have proposed several theories to explain the effects 

of N and P concentration on lipid accumulation in algae. Fogg (1956) 

theorized that N deficiency caused an increase in the proportion of fats 

to other organic constituents within a cell as a result of the hydroly

sis and subsequent loss from the cell of materials other than lipids. 

De Vasconcelos and Fay (1974) and Rosen (1982) suggested that the forma

tion of lipid droplets in algal chloroplasts results from the degradation 
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of the chloroplasts' thylakoid membranes. The formation of these lipid 

droplets would, of course, cause increases in the total amount of 

cellular lipid. Atkinson (1965) suggested that in N-deficient cells, 

an increase of ATP occurs due to the inhibition of protein synthesis. 

The concentration of AMP would decrease and the reduced activity of 

isocitric dehydrogenase would cause an accumulation of citric acid. 

Since citrate is the allosteric activator of acetyl CoA carboxylase 

(Stryer, 1981), the conversion of acetyl CoA to fatty acids would be 

enhanced. On the other hand, increased photosynthesis caused by increas

ing N and P supply rates might cause increases in the citric acid inter

mediates of C^. meneghiniana. Beardall ^aj_. (1976) noted photosynthetic 

fixation of carbon in 2 marine diatoms by reactions similar to those of 

plants. More than 70% of the carbon fixed in these 2 taxa was in 

the form of amino acids or as intermediates of the citric acid cycle 

(including citric acid). Increased citric acid concentrations would 

cause an increase in the activity of acetyl CoA carboxylase and, sub

sequently, an increase in fatty acid synthesis. If C^. meneghiniana 

possesses a photosynthetic mechanism similar to these 2 diatoms, the 

increase in the amount of cellular lipid with increasing N and P con

centrations might be explained. 

In addition, N stress could cause a reduction in the cells' protein 

synthesis and, consequently, in enzymatic activity. Col Iyer and Fogg 

(1955) speculated "that N deficiency brings about a change in the pro

portions of enzyme systems in favor of those concerned in fat synthesis." 

It may be that the enzymatic systems involved in fatty acid synthesis 
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are of low "priority" in the metabolism of £. meneghiniana. As N be

comes increasingly limited, the low "priority" enzymatic systems might 

be inhibited while systems more essential for cell survival remain 

operative. Since the amount of cellular protein appeared to be posi

tively correlated with the amount of cellular lipid of C^. meneghiniana, 

this hypothesis might explain the small amounts of cellular lipid at 

low N concentrations. 

Several factors could have contributed to differences in results 

between this study and others. The extraction techniques used in this 

study were chosen for their precision, ease of use, and applicability 

to algal samples. For example, the "Lowry Method" was used for protein 

determination because of its ease of use and universal acceptance. How

ever, Coombs et (1967a) noted that protein determination by the 

"Lowry Method" produced values 30% lower than the "Kjeldahl Method." 

In addition, most researchers have used the chloroform/methanol extrac

tion technique for lipid analysis. Only a few researchers (Otsuka and 

Morimura, 1966; Fisher and Schwarzenbach, 1978) have used alcoholic 

KOH to extract algal lipids. The alcoholic KOH techniques used in this 

study have been shown to be more effective in extracting lipids than 

chloroform/methanol techniques (Moon and Hammond, 1978). Therefore, 

differences in protein and lipid results between this study and others 

may have resulted from the extraction techniques that were used. 

No direct comparisons between data in this study and others can be 

made. The biochemical data in this study were expressed on a "per cell" 

basis. Other researchers have almost exclusively expressed biochemical 



www.manaraa.com

59 

data on a "per dry weight" basis. Data expressed on a dry weight 

basis are, however, difficult to interpret in diatoms "because of the 

presence of the silicious cell wall which is a highly variable per

centage of the dry weight in different species" (Darley, 1977). There

fore, since data in this study were intended only for comparisons with

in and between experimental treatments and not for comparisons between 

studies, expression of biochemical data on a "per cell" basis was judged 

to be satisfactory. 

Most researchers investigating nutrient-limitation effects on 

algal biochemical composition have analyzed nutrient-sufficient cells 

resuspended in nutrient-deficient media. The biochemical evaluation 

of such cells does not take into account the physiological history of 

the cells. Many algae can carry on normal physiological functions in 

nutrient-limited conditions as long as sufficient nutrient "pools" are 

maintained within the cells. For example, diatoms have been reported 

to store cytoplasmic "pools" of Si and P (Coombs et ^., 1967a; Azam 

et^., 1974; Tilman and Kilham, 1976; Kilham et^., 1977; Paasche, 

1980; Sullivan and Volcani, 1981). Therefore, the biochemical response 

of a culture during the initial period of Si or P limitation might 

simply be a response to the utilization of the cells' cytoplasmic "pools" 

rather than the nutrient concentration of the growth medium. 

To minimize the variability caused by the luxury consumption of 

nutrients by diatoms in batch-starvation experiments, Kilham et al. 

(1977) suggested a 5-day, Si-starvation period and a 3-week, P-starva-

tion period of cells prior to performing batch-growth experiments. In 
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this study, the biochemical composition of C^. meneghiniana was analyzed 

3 and 9 days after resuspension of nutrient-sufficient cells in 

nutrient-deficient media. No consideration was given for luxury con

sumption of nutrients by £. meneghiniana which may account for some of 

the differences in results between the nutrient-starvation and 

nutrient-stressed experiments. 

Most researchers investigating diatom lipid production have used 

marine taxa or a species of the freshwater genera, Nitzschia and 

Navicula, as a test organism. Physiological characterist ics of Ç. 

meneghiniana could have caused differences in results between this study 

and others. For example, Lowe (1974) reported £. meneghiniana to be a 

"facultative N heterotroph." Therefore, £. meneghiniana might possess 

different nutrient assimilation mechanisms than taxa used in other 

studies. 

To my knowledge, this is the first study to investigate the amount 

of cellular lipid of a diatom at steady state along nutrient gradients. 

The semi-continuous culture technique maintained constant cell growth 

rates by maintaining a constant rate of nutrient supply to the cells. 

Changes in the rate of nutrient supply cause changes in the growth rate 

and the physiological state of the cell. Biochemical measurements made 

on cells of semi-continuous cultures in different physiological states 

characterized the population at specific points along a nutrient gradi

ent. On the other hand, the batch culture technique did not maintain 

constant growth rate or similar physiological states of the cells. 

Biochemical measurements made on cells of batch cultures cannot be 
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Identified with a particular nutrient concentration. Therefore, re

sults of the nutrient-stressed experiments were more reliable than 

results of the nutrient-starvation experiments. Future studies should 

use continuous culture techniques for accurate biochemical and 

physiological analyses of algae. 
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BIOTECHNICAL PERSPECTIVE 

The application of mass algal cultures to biotechnology has at

tracted scientific attention since the late 1940s. Mass algal cultures 

have been proposed for use in wastewater treatment, bioregenerative life 

support systems, chemical production, water renovation and recycling, 

and, most recently, hydrocarbon fuel production (Anonymous, 1978; 

Goldman, 1979; Goldman, 1980; Bergeron et , 1983). The latter usage 

has received much attention in the last several years. However, the 

U.S. Research and Development Administration projected that for biomass 

"fuels" to have potential in energy production, they must provide 5 

to 10% of the total U.S. energy needs (Goldman and Ryther, 1977). 

If jC. meneqhiniana was mass cultured as a biotechnological energy 

source, the data presented in nutrient-stressed experiments could be 

used to estimate "conceivable" production of lipid, glucan, and protein. 

The amount of cellular lipid, glucan, and protein was greatest in N-

stressed cultures with the greatest N supply rate. The following 

hypothetical yields of lipid, glucan, and protein production were esti

mated using this data set. 

Assume that Z. meneqhiniana could achieve a uniform growth of 

25,000 cells-ml ^ in a 1 hectare (ha) by 50 cm pond. Since the harvest

ing of unicellular algae is difficult (Goldman and Ryther, 1977), a 

sampling efficiency of 75% is assumed. An extraction efficiency of 90% 

(Shifrin and Chisholm, 1980) is also assumed. Using these assumptions, 

hypothetical yields of 0.78 metric tons lipid-ha"^, 0.31 metric tons 
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glucan-ha~^, and 61.87 metric tons protein*ha"^ would result. If 

harvesting could be completed 3 times per year (yr), the hypothetical 

yield would be 2.33 metric tons lipid*ha"^-yr~^, 0.94 metric tons 

1 - 1  1 - 1  glucan-ha" -yr" , and 185.61 metric tons protein^ha" -yr" . Using the 

caloric values of 15 gigajoules (gj) per metric ton carbohydrate and 

protein and 40 gj per metric ton lipid (Dubinsky et , 1979), the 

total energy yield would be 2,891 gj-ha'^-yr"^. 

The importance and applicability of such an energy yield is diffi

cult to interpret. Based on the projected biomass cost target (i.e., 

gross income) of 0.95 to 1.40 dollars*gj"^ (Lipinsky, 1978), mass 

cultures of C_. meneghiniana could produce a gross income of 2,602 to 

4,047 dollars-ha~^-yr~^. This value is substantially higher than the 

yearly gross income calculated for algal biomass by Dubinsky et al. 

(1979) and approximately 5 to 8 times greater than that projected for 

plant energy "farms" (Lipinsky, 1978). However, these estimated gross 

incomes do not take into account any harvesting, production, or material 

costs. Consequently, no comparisons between algal and higher plant net 

incomes can be made. 

The success of algal mass cultures in biotechnology is dependent 

upon the selection and utilization of taxa which produce optimal yields 

concurrent with maximum growth. Researchers have indicated that algae 

produce optimal biochemical yields under conditions that are not con

ducive to optimal growth. The data generated from nutrient-stressed 

experiments indicated that £. meneghiniana produced greater biochemical 

yields with decreasing N stress. The ability of a taxon to produce 
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high biochemical yields under optimal growth conditions does, therefore, 

exist. This may be an occurrence specific to a particular taxon or a 

particular strain of a taxon. 

The challenge for scientists in biotechnology is to select 

organisms capable of producing the desired compounds under specific 

growth conditions. Such organisms could possibly be obtained in 

several ways. Certain taxa in Israeli mass algal cultures are'the 

"preferred" taxa with large yields of glycerin and beta carotene 

(Anonymous, 1978). Additional studies may allow researchers to identify 

other taxa that can produce large quantities of desired biochemical 

compounds (e.g., octadecatrienoic acid, a fatty acid of high commercial 

value). In addition, some researchers (Hall, 1979; Bergeron et al., 

1983) have proposed that manipulation of a taxon's genetic structure 

has great promise in biotechnology. The data from the nutrient-stressed 

experiments with £. meneqhiniana indicate that taxa can produce large 

amounts of desired compounds under low-stress growth conditions. Genetic 

engineering would be best used on these "preferred" taxa. Therefore, 

a thorough screening for these "preferred" taxa should be completed 

before manipulation of a taxon's gene structure is used to obtain large 

biochemical yields. 
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SUMMARY 

(1) The statistical significance of nutrient-limitation effects on 

the biochemical composition of the cells varied between batch 

and semi-continuous culture experiments. In batch cultures. Si 

deficiency caused a significant increase (300%) in the amount of 

cellular protein. Cellular protein was also significantly dif

ferent between fractional replicates. In semi-continuous cultures, 

cellular L/G ratios significantly decreased (50%) with increasing 

Si supply rate. The amount of cellular lipid, glucan, and protein 

significantly increased (300%) with increasing N supply rate. 

The amount of cellular lipid and glucan significantly increased 

(300 and 400%, respectively) with increasing P supply rate. 

(2) Fatty acids of lipid extracted from cells of semi-continuous cul

tures generally possessed carbon chain lengths of 14 to 24. Carbon 

chain lengths of fatty acids from cells in Si-stressed cultures 

ranged from less than 14 to 18. No distinct differences in diatom 

fatty acid composition were observed among supply rates within 

Si-stressed and N-stressed cultures. 

(3) Greater amounts of unsaturated fatty acids were found in lipid 

extracted from cells of N-stressed cultures than in cells of Si-

stressed cultures. 

(4) Discrepancies between results of this study anH others were 

attributed to culture design, extraction techniques, the scaling 

factor used for expression of biochemical content, and the 

physiological characteristics of £. meneghiniana. 
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An estimated yield for a hypothetical mass culture of £. 

meneqhiniana was calculated to be 2.33 metric tons 1ipid.ha"^-yr~^, 

0.94 metric tons glucan*ha~^-yr"^, and 185.61 metric tons protein* 

ha~^-yr~^. The total energy yield derived from such a biochemical 

yield would be 2,891 gj-ha'^-yr \ 
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Table Al. Mean square values for the sources of variation investigated in the factorial 
analysis of nutrient-starvation experiments 

Source of 
vari ati on 

Variable 

Lipid Glucan Protei n Chloro- Chlorophyll/ Protein/ Lipid/ 
phyll Phaeophytin Glucan Glucan 

Fractional replicate 8.60 

Limiting nutrients 

Silica 

Ni trogen 

Phosphorus 

Error (A) 

Days 

Interaction 

Days-Silica 1.56x10 

Days-Nitrogen 6.39 

Days'Phosphorus 6.38x10 

Error (b) 4.02 

7.60x10-2 6.88x10^* 1.21x10-6 3.58 8.86x105 6.41x10"' 

9.17 2.67x10" 
1 

6.87x10^* 1.43x10" 
4 1.68x10"^ 3.59x10^ 1.62x10 

8.78 5.89x10" •3 4.40x10* 9.03x10" 7 3.97x10-3 2.01x10^ 2.25 

7.01x10"! 1.24x10' 2 2.33x10* 8.10x10" •7 1.56x10"! 1.84x10® 9.14 

2.43 5.59x10" •2 3.28x10* 3.92x10" •5 4.50x10"! 1.66x10® 9.48 

1.12x10^ 9.17x10" •2 2.68x10^ 1.16x10" •5 3.21x10"! 1.82x10® 1.83 

1 

- 2  

1.61x10"^ 6.60x10^ 2.03x10 

2.43x10"^ 1.54x10 6.25x10 

2.05x10 

3.78x10 

-2  

-2  
3.33x10^ 2.11x10 

8.89x10^ 2.05x10 

-7 

-8 

-5 

-5 

4.36x10 

1.08 

3.76 

1.49 

-3 2.09x10 3.30x10 

1.80x10^ 

1.54x10^ 

6.17x10 

5.43 

1.59x10 1.98x10 1 

*p<0.05. 
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Table A2. Mean square values for the sources of variation investigated in the Analysis of Vari
ance for nutrient-stressed experiments 

Experi
ment 

Variable 
Source of 
variation Lipid Glucan Protei n 

Chloro-
Chloro- phyll/ Protein/ Lipid/ 
phyll Phaeo- Glucan Glucan 

phytin 

Silica 

Nitrogen 

Supply rate 8.09x10"® 
.-6 Linear 4.01x10 

Quadratic 1.22x10 

3.55x10-6 
,-6 

Error 4.37x10 

-5 

- 6  

6.22x10 

8.70x10 

1.43x10 

5.23x10-3 
•3 

Linear 8.72x10' 

Quadratic 1.00x10 

Error 1.24x10 

-7 

,-6 

Phosphorus 

Supply rate 1.48x10"^* 

Linear 2.58x10 

Quadratic 3.77x10 

5** 

Error 9.10x10 -7 

-7 
- 6  

4.78x10 

5.67x10 

8.25x10 

9.51x10-3 
.-5 

-3 

-4 

Supply rate 4.36x10 
5*** 

5.40x10 

1.08x10 

1.00x10 

1.90x10 

_6*** 

-5*** 

-8 

-7 

1.70x10 

3.30x10 

2.08x10 

4.31x10 

-1 

-3 

-3 

4.51x10-6*** 
.g*** 

8.43x10 

5.80x10 

4.00x10 

-7 

-8  

1.49x10 

2.59x10 

3.76x10" 

4.13x10 

-2  

- 2  

-3 

3.67x10 

1.90x10 

5.23x10 

-2  

- 2  

_1*** 

*** 
5.26x10 

1.40x10 

9.12x10 

1.24x10 

- 2  

- 2  

-2  

-2  

6.03x10 

7.72x10" 

4.35x10 

1.37x10 

-2  

-2 

-2  

1.03x103 1.75* 

1.16x10^ 2.04* 

8.87x10% 1.47 

1.74x10^ 3.44x10"! 

3.34 5.73x10^ 1.36x10"^ 

4.31 1.14x10^ 1.37x10"^ 

2.36 1.02x10^ 1.34x10"^ 

5.38 2.49x10^ 1.45 

3.89x10^ 1.80 

6.72x10* 3.06 

1.08x10* 5.44x10"! 

1.02x10* 3.61 

*p<0.05. 
**p<0.01. 

***p<0.001. 
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